W Estimates for the Monge-ampère Equation

نویسنده

  • THOMAS SCHMIDT
چکیده

We study strictly convex Alexandrov solutions u of the real MongeAmpère equation det(∇2u) = f , where f is measurable, positive, and bounded away from 0 and ∞. Under only these assumptions we prove interior Wregularity of u.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Note on Interior W 2,1+ε Estimates for the Monge-ampère Equation

By a variant of the techniques introduced by the first two authors in [DF] to prove that second derivatives of solutions to the Monge-Ampère equation are locally in L logL, we obtain interior W 2,1+ε estimates.

متن کامل

Regularity for Solutions of the Monge-ampère Equation

In this paper we prove that a strictly convex Alexandrov solution u of the Monge-Ampère equation, with right hand side bounded away from zero and infinity, is W 2,1 loc . This is obtained by showing higher integrability a-priori estimates for Du, namely Du ∈ L log L for any k ∈ N.

متن کامل

ON A PRIORI C1,α AND W2,p ESTIMATES FOR A PARABOLIC MONGE-AMPÈRE EQUATION IN THE GAUSS CURVATURE FLOWS

This paper establishes Hölder estimates of Du and Lp estimates of D2u for solutions u to the parabolic Monge-Ampère equation −Aut + ( det D2u)1/n = f .

متن کامل

Global W2, p estimates for solutions to the linearized Monge–Ampère equations

In this paper, we establish global W 2,p estimates for solutions to the linearizedMonge–Ampère equations under natural assumptions on the domain, Monge– Ampère measures and boundary data. Our estimates are affine invariant analogues of the global W 2,p estimates of Winter for fully nonlinear, uniformly elliptic equations, and also linearized counterparts of Savin’s global W 2,p estimates for th...

متن کامل

Quadratic Mixed Finite Element Approximations of the Monge-ampère Equation in 2d

We give error estimates for a mixed finite element approximation of the two-dimensional elliptic Monge-Ampère equation with the unknowns approximated by Lagrange finite elements of degree two. The variables in the formulation are the scalar variable and the Hessian matrix.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013